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Abstract

Background: Large gene expression studies, such as those conducted using DNA arrays, often
provide millions of different pieces of data. To address the problem of analyzing such data, we
describe a statistical method, which we have called ‘gene shaving’. The method identifies subsets of
genes with coherent expression patterns and large variation across conditions. Gene shaving
differs from hierarchical clustering and other widely used methods for analyzing gene expression
studies in that genes may belong to more than one cluster, and the clustering may be supervised by
an outcome measure. The technique can be ‘unsupervised’, that is, the genes and samples are
treated as unlabeled, or partially or fully supervised by using known properties of the genes or
samples to assist in finding meaningful groupings.
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Results: We illustrate the use of the gene shaving method to analyze gene expression
measurements made on samples from patients with diffuse large B-cell lymphoma. The method
identifies a small cluster of genes whose expression is highly predictive of survival.

Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression
data and identification of interesting clusters of genes worth further investigation.

Background

Through the use of recently developed DNA arrays, it is
now possible to obtain accurate, quantitative (relative)
measurements of a large proportion of the mRNA species
present in a biological sample. DNA arrays have been used
to monitor changes in gene expression during important

biological processes (for example, cellular replication and
the response to changes in the environment), and to study
variation in gene expression across collections of related
samples (such as tumor samples from patients with
cancer). A major challenge in interpreting these results is
to understand the structure of the data produced by such
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The DLCL expression matrix, in no particular row or column order. The display is a heat map, ranging from bright green

(negative, underexpressed) to bright red (positive, overexpressed). The gray cells indicate missing measurements.
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The DLCL expression matrix with rows and columns ordered according to a hierarchical clustering applied separately to the

rows and columns.

Figure 2
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Figure 3
The first three gene clusters found for the DLCL data. Each is a collection of genes showing similar and strong (high variance)
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Figure 4

-dimensional

and ordered by a hierarchical clustering in this three

mean genes together,

space. The lower panel is similar, except here we show all the genes in each cluster, 33 in all.

The top panel shows the three signed

relevant groupings of genes and samples [1-13]. Although
the underlying principles and computational details of
these methods differ, they share the goal of organizing the

studies, which often consist of millions of measurements. A
variety of clustering techniques have been applied to such

data, and have proved useful for identifying biologically
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Figure 5
Schematic of the gene shaving process.

elements under consideration (such as genes) into groups
(clusters) with coherent behavior across relevant measure-
ments (such as samples). Generally absent is any consider-
ation of the nature of the coherent variation. For example,
one might want to identify groups of genes that have coher-
ent patterns of expression with large variance across
samples, or groups of genes that optimally separate
samples into predefined classes (such as different clinical

response groups in tumor samples). Here, we introduce a
new statistical method, which we call gene shaving, that
attempts to identify groups of elements (genes) that have
coherent expression and are optimal for various properties
of the variation in their expression.

Figure 1 shows the dataset used in our study, which con-
sisted of 4673 gene expression measurements on 48 patients
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Figure 6

Scatterplot matrix of the three column averages, or ‘super genes’, from each cluster.

with diffuse large B-cell lymphoma (DLCL). These data have
been described in detail previously [14]. The column labels
refer to different patients, and the rows correspond to genes.
The order of rows and columns is arbitrary.

Some authors have recently explored the use of clustering
methods to arrange the genes in some systematic way, with
similar genes placed close together (see [2] for developments
and [15] for an overview). In Figure 2, we have applied hier-
archical clustering to the genes and samples separately. Each
clustering produces a (non-unique) ordering, one that
ensures that the branches of the corresponding dendrogram
do not cross. Figure 2 displays the original data, with rows
and columns ordered accordingly.

Some structure is evident in Figure 2, and this method can be
used to recognize relationships among the genes and samples.

With any method that reduces the dimension of the data,
however, finer structure can be lost. For example, suppose the
expression of some subset of genes divides the samples in an
informative way, correlating with the rate of proliferation of
tumor cells, for example, whereas another subset of genes
divides the samples a different way, representing the immune
response, for example. Then methods such as two-way hierar-
chical clustering, which seek a single reordering of the samples
for all genes, cannot find such structure.

The method of gene shaving we describe here is designed to
extract coherent and typically small clusters of genes that
vary as much as possible across the samples. Figure 3 shows
three gene clusters for the DLCL data, found using shaving.
Some of the genes within each cluster lie close to each other
in the hierarchical clustering of Figure 2, but others, and the
clusters themselves, are quite far apart.
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1. Start with the entire expression matrix X, each row
centered to have zero mean.

2. Compute the leading principal component of the rows
of X.

3. Shave off the proportion o (typically 10%) of the genes
having smallest absolute inner-product with the
leading principal component.

4. Repeat steps 2 and 3 until only one gene remains.

5. This produces a nested sequence of gene clusters

SyD28,D2S8. DS, D-..-DS, where S, denotes a

1 2 A

cluster of k genes. Estimate the optimal cluster size k

using the gap statistic described in the section on the
gap estimate.

6. Orthogonalize each row of X with respect to X, the
average gene in Sy.

7. Repeat steps 1-5 above with the orthogonalized data, to
find the second optimal cluster. This process is
continued until a maximum of M clusters are found,
where M is chosen a priori.

Box |
The shaving algorithm.

In Figure 3 the samples have been ordered by values of the
average gene expression. This average gene is a good repre-
sentative of the cluster, as all the members are so similar.
The variance measures at the top of each cluster are dis-
cussed in more detail later. The clusters are all of different
sizes. We use an automatic method for determining the size
of the clusters, based on a randomization procedure that
protects us from looking too hard in the large sea of genes
and finding spurious structure. The three cluster-average
genes, one from each cluster, are reasonably uncorrelated
(see below and Figure 6). This is another aspect of the
shaving process - it seeks different clusters, where difference
is measured by correlation of the cluster mean. Figure 4
shows the results of a hierarchical clustering applied to the
three column-average genes. Whereas hierarchical cluster-
ing suggests two main gene groupings, the shaving process
may suggest more useful groupings.

This article is organized as follows. In the section ‘Gene
shaving’ we describe the method itself. The section entitled
‘The gap estimate of cluster size’ outlines the gap test for
choosing the cluster size. In the section ‘Predicting patient
survival’ we try to predict patient survival from gene cluster
averages. ‘Supervised shaving’ is discussed in the following
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Figure 7

Percent of gene variance explained by first j gene shaving
column averages (j = 1,2, ... 0) (solid curve), and by first j
principal components (broken curve). For the shaving
results, the total number of genes in the first j clusters is
also indicated.

section. Finally, in the ‘Conclusions’ we propose some
further generalizations. A more statistical treatment of gene
shaving is given in [16].

Results

Gene shaving

In this section we describe in detail our technique for finding
clusters like the example in Figure 3. A gene expression
matrix is an N x p matrix of real-valued measurements
X =x; The rows are genes, the columns are samples, and X
is the measured (log) expression, relative to a baseline. Typi-
cally there are missing entries in X. We use a technique
described in [17], an iterative algorithm based on the singular
value decomposition, for imputing missing expression values;
our analysis here assumes that X has no missing values.

Let S, be the indices of a cluster of k genes, and

1 1 1
3_(‘Sk: ( ;EXU’ ZEXI-Q, ey IEXI'P)

i€s, i€s, i€s,

be the collection of p column averages of the expression
values for this cluster. Then for each cluster size k, gene
shaving seeks a cluster S, having the highest variance of the
column averages:
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The three gene clusters from unsupervised shaving

Gene number ClonelD Description

Cluster |

2866 “139009” “Fibronectin 1”

2867 “358168” “Unknown UG Hs.106127 ESTs, Highly similar to (defline not available 4689136) [H. sapiens]”

2868 “323656” “MMP-2=Matrix metalloproteinase 2=72 kD type IV collagenase precursor=72 kD gelatinase=gelatinase A=TBE-1"
2907 “897910” “OSF-2os=osteoblast-specific factor=putative bone adhesion protein with homology with the insect protein fasciclin I”
2869 “359412” “Cyclin D2/KIAK0002=overlaps with middle of KIAK0002 cDNA”

2871 “754106” “TIMP-3=Tissue inhibitor of metalloproteinase 3”

2865 “526335” “MMP-9=Matrix metalloproteinase 9=92 kD Gelatinase B=92 KD type IV collagenase”

2870 “487878” “osteonectin=SPARC=basement membrane protein”

Cluster 2

2820 “753794” “BLC=BCA-1=B lymphocyte chemoattractant BLC=CXC chemokine”

785 “1334260” “Unknown UG Hs.120716 ESTs”

2521 “713158” “Unknown UG Hs.89104 ESTs”

801 “701361” “Similar to FXI-T I=FX-induced thymoma transcript”

2720 “814655” “Similar to retinol dehydrogenase type | (RODH I)”

2721 “701122” “Unknown UG Hs.119410 Homo sapiens cytokine receptor related protein 4 (CYTOR4) mRNA, complete cds”
2522 “1272196” “IRF-4=LSIRF=Mum | =homologue of Pip=Lymphoid-specific interferon regulatory factor =Multiple myeloma oncogene 1”
2659 “685177” “PTP-1B=phosphotyrosyl-protein phosphatase”

774 “701606” “CD10=CALLA=Neprilysin=enkepalinase”

771 “1305913” “Unknown UG Hs.106771 ESTs”

432 “417048” “Similar to human endogenous retrovirus-4”

781 “1367994” “myb-related gene A=A-myb”

2539 “182764” “EBI2=Epstein-Barr virus induced G-protein coupled receptor=Putative chemokine receptor”

757 “683405” “SA3=nuclear protein”

793 “1353041” “Unknown 166”

2494 “1357360” “Cyclin D2/KIAK0002=3\325 end of KIAK0002 cDNA”

2929 “469297” “DECI =basic helix-loop-helix protein”

728 “1338981” “Unknown UG Hs.137038 EST”

2656 “814768” “Unknown UG Hs.193857 ESTs”

787 “1338448” “Unknown UG Hs.224323 ESTs, Moderately similar to alternatively spliced product using exon 13A [H. sapiens]”
720 “815539” “JAW | =lymphoid-restricted membrane protein”

772 “700718” “Unknown UG Hs.202588 ESTs”

777 “1352112” “FMR2=Fragile X mental retardation 2=putative transcription factor=LAF-4 and AF-4 homologue”

Cluster 3

546 “725263” “immunoglobulin kappa light chain”

547 “1172268” “HKG7=cell surface protein in NK and T cells=G-CSF-induced gene”

The first value given is the gene number in the set of 3624. The second value is the ClonelD. Cross-referencing of this Clone ID with the Accession
number is available in the data tables at http://lIimpp.nih.gov/lymphoma/data.shtml

S; maximizes Var(¥ Sk) (1)

The important question of how to choose the cluster size k is
addressed in the next section.

Our procedure generates a sequence of nested clusters S, in
a top-down manner, starting with k = N, the total number
of genes, and decreasing down to k = 1 gene. At each stage
the largest principal component of the current cluster of
genes is computed. This eigen gene is the normalized linear
combination of genes with largest variance across the
samples. We then compute the inner product (essentially
the correlation) of each gene with the eigen gene, and
discard (‘shave off’) a fraction of the genes having lowest
(absolute) inner product. The process is repeated on the
reduced cluster of genes. The shaving algorithm is depicted
in Figure 5 and given in detail in Box 1.

There are a number of duplicate genes in the dataset. In
some cases the sequence for a given gene appears on the
microarray more than once, either by design or by acci-
dent. In other cases, more than one different EST
(expressed sequence tag) is present for the same gene.
Gene shaving can be affected by duplicate genes, since they
are highly correlated with each other. We therefore aver-
aged expression profiles for the duplicate genes, leaving
3624 unique gene profiles.

The sequence of operations 1-5 in Box 1 gives the first cluster
of rows - the first ribbon in Figure 3. Step 6 orthogonalizes
the data to encourage discovery of a different (uncorrelated)
second cluster. Note that although we work with the orthog-
onalized matrix in the shaving process for the second and
subsequent clusters, the derived clusters and their averages
involve the original genes.
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(@) Variance plots for real and randomized data. The percent variance explained by each cluster, both for the original data,
and for an average over three randomized versions. (b) Gap estimates of cluster size. The gap curve, which highlights the

difference between the pair of curves, is shown.

The shaving process requires repeated computation of the
largest principal component of a large set of variables. If
naively implemented, this requires the construction of a
N x N sample covariance matrix X of the genes, and the
computation of its largest eigenvector. We can avoid the
computational burden by working in the dual space, where
the matrices have dimension p x p. Furthermore, as we
require only the largest eigenvector, the computations can be
reduced even further by using the power method, using the
eigenvector of the previous cluster as a starting value.

The three resulting clusters are shown in Figure 3 and again
in Figure 4. Figure 6 shows the pairwise scatterplots of each
of the three column averages (‘super genes’) from the clus-
ters. The absolute correlations range from 0.27 to 0.68. The
full gene names for the members of the first three clusters
are given in Table 1.

It is useful to evaluate how much of the dimensionality of the
gene expression variation is captured by the clusters derived
from gene shaving. We can approximate the expression
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Average (absolute) gene correlation and Cox model p value,
for clusters of size 200 from supervised shaving and for
different values of o.. The value of Qa = 0. seems best, and
is used in the gene shaving procedure.

profile for each gene in the complete dataset as a linear com-
bination of the three super genes from each cluster (which
are simple averages of the genes in each cluster). The
percent variance explained by the first j = 1,2, ...10 super
genes is shown in Figure 7.

Thus the three gene clusters, involving a total of 33 genes,
explain about 20% of the variation. The percent variance
explained by the first j principal components (broken curve)
exceeds that from gene shaving. Each principal component
gives a non-zero weight to all 3624 genes, however.

The gap estimate of cluster size

Each shaving sequence produces a nested set of gene clus-
ters S, starting with the entire expression matrix and then
proceeding down to some minimum cluster size (typically 1).
If we applied this procedure to null data, in which the rows
and columns were independent of each other, we could still
find some interesting-looking patterns in the resulting
blocks. Hence, we need to calibrate this process so that we
can differentiate real patterns from spurious ones. Even in
the case of real structure, it is unlikely that a distinct set of
genes is correct for a cluster, and the rest not. More likely
there is a graduation of membership eligibility, and we have
to decide where to draw the line. Here we describe a proce-
dure based on randomization that helps us select a reason-
able cluster size.

Our method requires a quality measure for a cluster. We
favor both high-variance clusters, and high coherence

http://genomebiology.com/2000/1/2/research/0003.1 |

between members of the cluster. As the generation of the
cluster sequence was driven strongly by the former, we focus
on the latter in selecting a good cluster. By analogy with the
analysis of variance for grouped data, we define the follow-
ing measures of variance for a cluster S;:

1 1 _
Viw=— E [; 2 (g — X)) } Within Variance (2)
P = ies,
L2
Vp=— E(’_‘ ,—X)*  Between Variance (3)
Jj=1
) p
Vp=— E E (x; —X)* Total Variance (4
kpics, i=
=V +Vp

The between variance is the variance of the (signed) mean
gene. The within variance measures the variability of each
gene about the cluster average, also averaged over samples.
As this can be small if the overall variance is small, a more
pertinent measure is the between-to-within variance ratio
Vg / Vi, or alternatively, the percent variance explained

VB
v Y
R2=1008 = v = 5)
VT 1+ V—B

w

A large value of R? implies a tight cluster of coherent genes.
This is the quality measure we use to select a cluster from the
shaving sequence S,.

Let S, index the clusters of a given shaving sequence (with k
being the number of genes). Let D, be the R? measure for the
kth member of sequence. We wish to know whether D, is
larger than we would expect by chance, if the rows and
columns of the data were independent.

Let X be a permuted data matrix, obtained by permuting
the elements within each row of X. We form B such matrices,
indexed by b = 1,2, ... B. Let D, be the R? measure for
cluster S;®. Denote by D," the average of D, over b. The
Gap function is defined by

Gap (k) = D, - D;, (6)

We then select as the optimal number of genes that value of
k producing the largest gap:

k = argmax, Gap(k) (7)

The idea is that at the value k the observed variance is the
most ahead of expected. Multiple clusters are produced for the
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Figure 10
Cluster of 234 genes from supervised shaving.
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DLCL-0052
DLCL-0009
DLCL-0029

randomized data just like for the original data, and the gap
test is used repeatedly to select the cluster size at each stage.

For the DLCL data, the maximum for the first cluster occurs
at eight genes. Figure 8 shows the percent-variance curves,
D, for both the original and randomized tumor data as a
function of size, and the gap curves used to select the specific
cluster sizes in Figure 3.

Predicting patient survival

One important motivation for developing gene shaving was
the wish to identify distinct sets of genes whose variation
in expression could be related to a biological property of
the samples. In the present example, finding genes whose
expression correlates with patient survival is an obvious
challenge. Group factors g, g, g, were created by splitting

each gene cluster in Figure 3 into two groups of 24
patients. We used each of these groupings as a factor in
Cox’s proportional hazards model for predicting overall
survival [18]. Of the group factors only g, was significant,
at the 0.05 level (p = 0.04).

In [14], a cluster of 380 genes was chosen on the basis of
their large variation over samples, and their ‘germinal
center B-like’or ‘activated B-like’ expression profiles. Using
these 380 genes, a hierarchical clustering produced two
groups of patients which were (just) statistically different in
survival. Close inspection shows that 18 of the 23 genes in
the second cluster above also fall into this cluster of 380
genes. Hence, gene shaving can find clinically and biologi-
cally relevant subdivisions in gene expression data in an
unsupervised fashion.
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Groupl DLCL-0017 DLCL-0025 DLCL-0028 DLCL- 0031 DLCL- 0040 DLCL-0042
DLCL- 0049 DLCL-0007 DLCL-0021 DLCL-0006 DLCL-0002 DLCL-0013
DLCL- 0016 DLCL-0048 DLCL-0036 DLCL-0012 DLCL-0003 DLCL-0018
Group 2 DLCL-0039 DLCL-0011 DLCL-0020 DLCL-0027 DLCL-0005 DLCL-0014
DLCL- 0030 DLCL-0001 DLCL-0004 DLCL-0008 DLCL-0009 DLCL-0010
DLCL- 0029 DLCL-0032 DLCL-0034 DLCL-0037 DLCL-0015 DLCL-0033

Figure 12

The two groups of samples that showed highest and lowest expression of the gene cluster associated with survival.

It may be fortuitous that one of these groupings correlates
with survival, as the clusters were not chosen with survival in
mind. We next describe a modification of gene shaving that
explicitly looks for clusters that are related to patient survival.

Supervised shaving

The methods discussed so far have not used information about
the columns to ‘supervise’ the shaving of rows. Here we gener-
alize gene shaving to incorporate full or partial supervision.

As in Equation (1), we consider a cluster of genes S, having
column average vector Xg.. Let y = (y,, Y, .. y,) be a set of
auxiliary measurements available for the samples. For

example each y; might be a survival time for the patient cor-
responding to sample j or a class label for each sample, such
as a diagnosis category. Supervised shaving maximizes a
weighted combination of column variance and an informa-
tion measure J(x S y):

msax[(l — )« Var (xg) + o+ J(xg, Y] (8)
k

for fixed 0 <o <1. The value o =1 gives full supervision;
values between 0 and 1 provide partial supervision.

Choice of the measure J(x S0 y) depends on the nature of the
auxiliary information y. If the y codes class labels, J(xg, , y)
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Table 2

Cluster from supervised shaving applied to full set of 3624 genes

Position ClonelD Description

“-685” “712937” “hPMS1=DNA mismatch repair protein=mutL homologue”

“-3531” “1186043” “Unknown UG Hs.134746 ESTs,

“1661” “1352820” “Unknown UG Hs.231825 ESTs”

“-2667" “1356433” “Unknown 645”

*4798” “814622” “Unknown UG Hs.49614 ESTs”

“-3545” “713080” “CLK-2=cdc2/CDC28-like protein kinase-2"

* 4153 “1339106” “XE7=B-lymphocyte surface protein”

*4824” “1356501” “Unknown UG Hs.130721 ESTs”

“-3414” “1319801” “Similar to non-erythropoietic porphobilinogen deaminase (hydroxymethylbilane synt EC4.3.1.8)”
“-1577” “1353785” “Unknown UG Hs.| 19769 ESTs”

“-3242” “376942” “Ro ribonucleoprotein autoantigen (Ro/SS-A)=autoantigen calreticulin”
*4.3535” “1336373” “Similar to High mobility group (nonhistone chromosomal) protein isoforms | and Y”
“-3412” “344219” “5’-terminal region of UMK”

“-673” “279363” “Adenosine kinase”

“920” “1355987” “Unknown UG Hs.180836 EST”

*“800” “1358163” “Phosphatidylinositol 3-kinase p 110 catalytic, gamma isoform”

*4823” “1319062” “WIP/HS PRPL-2=WASP interacting protein”

*4799” “1339726” “Unknown |68”

*4788” “825199” “Unknown 164"

“-3544” “1285581” “Similar to myb-related gene A-myb 5’-region”

“-68” “589589” “homolog of Drosophila splicing regulator suppressor-of-white-apricot”

* 4759 “1333557” “Unknown 161"

“339” “1336946” “Unknown 80”

“-178” “1354703” “Unknown UG Hs.150458 ESTs”

*-933” “1184133” “CASPASE-3=CPP32 isoform alpha=yama=cysteine protease”

“.2714” “149994” “BI12 protein=tumor necrosis factor-alpha-induced endothelial primary response gene
“-3364” “271976” “ACY |=aminoacylase-1"

“118” “145409” “Low-affinity 1gG Fc receptor II-B and C isoforms (multiple orthologous genes)”
*ee71” “1317098” “tyrosine kinase (Tnkl)”

“-2623” “324973” “9G8 splicing factor”

* 783" “814601” “Unknown UG Hs.161905 EST”

“2421” “1370055” “Unknown 602”

“1855” “1358160” “Unknown 428”

*4813” “23173” “JNK3=Stress-activated protein kinase”

“-1412” “22438” “RYK receptor-like tyrosine kinase”

“1104” “1336779” “Unknown 2217

“1521” “1670861” “Unknown UG Hs.32533 ESTs”

“2568” “1184568” “Unknown UG Hs.120785 ESTs”

“3161” “365358” “pM5 protein=homology to conserved regions of the collagenase gene family”
“279” “1367883” “KIAA0430”

“338” “1336591” “Unknown UG Hs.180644 ESTs”

* 163" “746300” “Unknown UG Hs.136345 ESTs”

* 12661 “1302032” “Deoxycytidylate deaminase”

* 4787 “1338448” “Unknown UG Hs.224323 ESTs, Moderately similar to alternatively spliced product exon |3A [H.sapiens]”
“2567” “1354788” “Unknown 627”

*4758” “1333558” “Unknown 160”

“-3264” “704732” “Unknown 699”

“.2654” “724397” “lymphopain=C| peptidase expressed in natural killer and cytotoxic T cells”
“1132” “1354522” “Unknown UG Hs. 125285 ESTs, Highly similar to (defline not available 4200446) [Mlus]”
* 415957 “1186040” “Unknown UG Hs.136589 ESTs”

2320”7 “241481” “CASPASE- 0=Mch4=FLICE2”

“-3345” “502761” “Phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase phoribosylaminoimidazole synthetase”
“-33” 268727” “MYH=DNA mismatch repair protein=mutY homologue”

*4774” “701606” “CD10=CALLA=Neprilysin=enkepalinase”

“-533” “276483” “(2’-5’) oligoadenylate synthetase E”

“1388” “1350824” “Unknown UG Hs.163773 ESTs”

“-3244” “488754” “DAP-|=putative mediator of the gamma interferon-induced cell death”

“3097” “686331” “DCHT=Similar to rat pancreatic serine threonine kinase”

“-2641” “1355868” “Unknown 643”

“-3135” “199018” “P120=proliferating-cell nucleolar protein”

“-1578” “713301” “Unknown UG Hs.32218 ESTs,

“.2502” “153355” “LD78 beta=almost identical to MIP-1 alpha=chemokine”

Continued
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Table 2

Continued

Position ClonelD Description

“2328” “1341026” *“yotiao=protein of neuronal and neuromuscular synapses that interacts with specific variants of NMDA receptor subunit NR1”

“1863” “1357676” “Unknown UG Hs.19121 | ESTs”

“1399” “1356420” “Unknown UG Hs.207995 ESTs”

“-3401” “844479” “Pig8=p53 inducible gene=etoposide-induced mMRNA=Similar to E|124 = p53 responsive (sculus)”

“-3040” “1368740” “Unknown UG Hs.125307 EST”

“-3193” “152653” “C-1-Tetrahydrofolate Synthase, cytoplasmic”

“-3437” “814765” “kinase A anchor protein”

“1387” “1318821” “Unknown UG Hs.108614 Homo sapiens mRNA for KIAAQ0627 protein, partial cds”

“.2527” “1357085” “Acidic 82 kDa protein”

*1400” “682995” “Unknown 298”

*4724” “1286796” “Unknown UG Hs.61506 ESTs”

“413” “1334297” “Unknown 98”

* 789" “825217” “Unknown UG Hs.169565 ESTs,

“.2754” “1318136” “5’-AMP-activated protein kinase, gamma-| subunit”

“1052” “1240803” “Unknown 2117

“278” “815671” “Unknown UG Hs.101340 ESTs”

“-2501” “346550” “MIP-1 alpha=LD78 alpha=pAT464=Small inducible cytokine A3=macrophage inflammatory in (GOSI9-1)=chemokine”

“1988” “1320268” “Unknown 480”

“-903” “704637” “Unknown UG Hs.5354 ESTs”

“-2649” “181998” “NFAT3=NFATc4”

“.2648” “171693” “Lst-1=IC7=interferon-gamma-inducible gene present in lymphoid tissues, T cells, macrophages, and histiocyte cell lines
encoding a transmembrane protein”

“2373” “1338072” “Unknown 592”

“223” “1352327” “Unknown 52”

“1269” “1339210” “Unknown 261”

“-3004” *1289545” “Unknown UG Hs.187869 ESTs”

“1177” “700949” “Similar to myosin-IXb”

*4779” “703735” “Unknown UG Hs.28355 ESTs”

* 464" “685761” “Unknown 1117

“1229” “700643” “Unknown UG Hs.104492 ESTs”

“-3482” “51058” “E2F-4=pRB-binding transcription factor”

“