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he diagnosis of the hematologic cancers presents a daunting

 

challenge. The many stages of normal hematopoietic differentiation give rise to
a number of biologically and clinically distinct cancers. Inherited DNA-sequence

variants do not appear to have a prominent causative role; rather, these diverse cancers
are typically initiated by acquired alterations to the genome of the cancer cell, such as
chromosomal translocations, mutations, and deletions. The diagnosis of the hemato-
logic cancers is commonly based on morphologic evaluation supplemented by analysis
of a few molecular markers. However, in some diagnostic categories defined in this fash-
ion, the response of patients to treatment is markedly heterogeneous, arousing the sus-
picion that there can be several molecularly distinct diseases within the same morpho-
logic category.

Gene-expression profiling is a genomics technique that has proved effective in de-
ciphering this biologic and clinical diversity. The approach relies on the fact that only a
fraction of the genes encoded in the genome of each cell are expressed — that is, actively
transcribed into messenger RNA (mRNA) (Fig. 1A). The abundance of mRNA for each
gene depends on a cell’s lineage and stage of differentiation, on the activity of intracel-
lular regulatory pathways, and on the influence of extracellular stimuli. To a large extent,
the complement of mRNAs in a cell dictates its complement of proteins, and conse-
quently, gene expression is a major determinant of the biology of normal and malig-
nant cells.

In the process of expression profiling, robotically printed DNA microarrays are used
to measure the expression of tens of thousands of genes at a time; this creates a molecular
profile of the RNA in a tumor sample

 

1

 

 (Fig. 1B). A variety of analytic techniques are used
to classify cancers on the basis of their gene-expression profiles.

 

2,3

 

 There are two general
approaches. In an unsupervised approach, pattern-recognition algorithms are used to
identify subgroups of tumors that have related gene-expression profiles (Fig. 2A). In a
supervised approach, statistical methods are used to relate gene-expression data and
clinical data (Fig. 2B). These methods have revealed unexpected subgroups within the
diagnostic categories of the hematologic cancers that are based on morphology and have
demonstrated that the response to therapy is dictated by multiple independent biologic
features of a tumor. This is not a comprehensive review of hematologic cancers; rather,
it will provide examples of how gene-expression profiling has been used to provide a
framework for the molecular diagnosis of these cancers.

 

diffuse large-b-cell lymphoma

 

Some cases of diffuse large-B-cell lymphoma respond well to multiagent chemothera-
py,
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 but this lymphoma nonetheless remains a perplexing clinical puzzle, since roughly
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60 percent of cases are incurable. This observation
raises the possibility that this single diagnostic cat-
egory may harbor more than one molecular disease.

The gene-expression profiles of lymph-node–
biopsy specimens from patients with morphologi-
cally identical diffuse large-B-cell lymphoma show
pronounced variability, with no common set of
genes expressed in all cases.

 

4,6,7

 

 To make sense of
this variability, genes were classified into expression
signatures
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 — that is, groups of genes with similar
patterns of expression in a set of samples. Some
signatures include genes expressed in a particular
type of cell or stage of differentiation, whereas other
signatures include genes expressed during a partic-
ular biologic response, such as cellular proliferation
or the activation of a cellular signaling pathway.

One gene-expression signature that varies mark-
edly among diffuse large-B-cell lymphomas is the
germinal-center B-cell signature.
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 This signature
characterizes B cells that are responding to a foreign
antigen within the germinal-center microenviron-
ment of secondary lymphoid organs. Among biopsy
samples from patients with diffuse large-B-cell lym-
phoma, three biologically and clinically distinct sub-
groups have been identified

 

4,6

 

 (Fig. 3A). The germi-
nal-center B-cell–like subgroup (approximately 50
percent of cases) has high levels of expression of
germinal-center B-cell signature genes, whereas the
other two subgroups of diffuse large-B-cell lympho-
ma — termed activated B-cell–like and type 3 — do
not. The activated B-cell–like subgroup (approxi-
mately 30 percent of cases) instead expresses genes
that are induced by mitogenic stimulation of blood
B cells. The type 3 subgroup does not express genes
characteristic of the other two subgroups and may
yet be found to be heterogeneous. These findings
suggest that the subgroups of diffuse large-B-cell
lymphoma arise from different stages of normal
B-cell development.

The notion that the gene-expression subgroups
represent pathogenetically distinct types of diffuse
large-B-cell lymphoma has been strongly supported
by analysis of recurring chromosomal abnormali-
ties in this cancer.

 

4,10

 

 The t(14;18) translocation in-
volving the 

 

BCL2

 

 gene and the amplification of the

 

c-rel

 

 gene on chromosome 2p are recurrent onco-
genic events in germinal-center B-cell–like diffuse
large-B-cell lymphoma, but they never occur in the
other subgroups. Activation of the nuclear factor-

 

k

 

B
signaling pathway is a feature of the activated B-cell–
like subgroup but not the other subgroups, and in-

terference with this pathway selectively kills this type
of diffuse large-B-cell lymphoma.
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The subgroups defined with the use of gene-
expression signatures are clinically distinct as well:
patients with the germinal-center B-cell–like form
have a higher rate of overall survival five years after
chemotherapy than do patients in the other sub-
groups

 

4,6

 

 (Fig. 3A). This clinical distinction based
on gene-expression profiles was evident even after
the patients were classified according to the Inter-
national Prognostic Index,

 

4,6

 

 a well-established
predictor of outcome in diffuse large-B-cell lym-
phoma.
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predicting the clinical outcome

 

The example of diffuse large-B-cell lymphoma dem-
onstrates how an unsupervised analysis of gene-
expression data can reveal clinically distinct sub-
groups of tumors. In the complementary, supervised
approach, clinical data are used to identify genes
whose patterns of expression are correlated with the
length of survival after diagnosis or with the likeli-
hood that therapy will be curative. This approach

 

Figure 1 (facing page). Differential Expression of Mes-
senger RNA (mRNA) by Different Types of Cells (Panel A) 
and Gene-Expression Profiling Using DNA Microarrays 
(Panel B).

 

In Panel A, different types of cells, exemplified by a myo-
cyte and a lymphocyte, express a distinct set of mRNAs 
from their genomes. Although the myocyte and lympho-
cyte possess the same inherited genomic DNA, distinct 
regulatory networks inside each cell cause different 
genes to be expressed as mRNA. The genes that encode 
myosin and immunoglobulin are among the most differ-
entially expressed genes between these two types of 
cells. The mRNAs for other genes may be present in both 
types of cells, but at different levels, which may also af-
fect the biology of the cells. Panel B shows the technique 
of gene-expression profiling, which uses DNA microar-
rays. First, mRNA is extracted from a cell and copied en-
zymatically to create a fluorescent complementary DNA 
(cDNA) probe representing the expressed genes in the 
cell. This probe is then incubated on the surface of a 
DNA microarray, which contains spots of DNA derived 
from thousands of distinct human genes. During the in-
cubation, each cDNA molecule in the probe hybridizes to 
the microarray spot that represents its respective gene. 
The extent of hybridization of fluorescent cDNAs to each 
microarray spot is quantitated with use of a scanning fluo-
rescence microscope. The levels of expression of more 
than 20,000 genes — in this example, the genes for myo-
sin and immunoglobulin — can be measured in a single 
DNA-microarray experiment.
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has been used to develop robust predictors of prog-
nosis in mantle-cell lymphoma

 

13

 

 and diffuse large-
B-cell lymphoma.

 

4,7

 

Mantle-cell lymphoma constitutes approximate-
ly 8 percent of cases of non-Hodgkin’s lymphomas
but a much larger fraction of deaths from lympho-

ma, since current therapy is not curative. The length
of survival among patients with mantle-cell lympho-
ma is quite variable, ranging from less than 1 year to
more than 10 years.

 

13

 

 Gene-expression profiling re-
vealed a strong association between the expression
of genes in the “proliferation” signature and surviv-
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al in mantle-cell lymphoma.

 

13

 

 The proliferation sig-
nature includes genes that are more highly ex-
pressed in dividing cells than in quiescent cells
(Fig. 4A). The quartile of patients with the lowest
level of proliferation-signature expression had a me-
dian survival of 6.7 years, whereas the quartile with
the highest level of expression had a median survival

of 0.8 year (Fig. 4A). The variable survival of patients
with mantle-cell lymphoma is therefore largely dic-
tated by a single aspect of tumor biology, the rate of
cell division, which can be quantitated by gene-
expression profiling.

Although the subgroups of diffuse large-B-cell
lymphoma have distinct survival rates, the statistical

 

Figure 2. Molecular Diagnosis of Cancer by Gene-Expression Profiling with the Use of Unsupervised (Panel A) and Su-
pervised (Panel B) Pattern-Recognition Algorithms.

 

Panel A shows the discovery of cancer subgroups with the use of an unsupervised pattern-recognition algorithm. The ex-
pression of genes, as determined by DNA-microarray analysis, is depicted in a tabular format. Each row represents data 
for a particular human gene, and each column represents the expression of genes in a single biopsy sample (arrows). 
Highly expressed genes are shown in shades of red, and less highly expressed genes are shown in shades of green, ac-
cording to the color scale shown. Before the analysis, no pattern is apparent (left-hand panel). A mathematical algo-
rithm, termed “hierarchical clustering,”

 

2

 

 is applied to the gene-expression data to search for a pattern (right-hand 
panel). This algorithm first rearranges the genes (in rows) so that genes with related patterns of expression are clus-
tered. The algorithm next rearranges the samples (in columns) so that samples that have related expression of these 
genes are clustered. In this example, the hierarchical-clustering algorithm identified a clear subgroup of three tumor 
samples (on the far right-hand side) whose pattern of gene expression is distinct. Panel B shows how a supervised sta-
tistical algorithm is used to identify genes with patterns of expression that predict the clinical outcome. For each gene on 
the microarray, expression data from tumors are correlated with overall survival data from the corresponding patients. 
The example shows two genes with patterns of expression that are correlated with survival after chemotherapy for dif-
fuse large-B-cell lymphoma.

 

4

 

 A high level of expression of gene A is associated with extended survival, whereas a high 
level of expression of gene B is associated with short survival. Neither gene has a pattern of expression that is perfectly 
correlated with survival, illustrating that the clinical outcome is independently influenced by multiple molecular and clin-
ical variables.
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approach of supervised analysis identified addition-
al molecular differences among the tumors that can
account for much of the remaining heterogeneity in
survival

 

4,7

 

 (Fig. 4B). This approach demonstrated
that at least five distinct features of diffuse large-
B-cell lymphomas influence the response to chemo-
therapy.

 

4

 

 Specifically, the levels of expression of the
germinal-center B-cell signature, the proliferation
signature, the major-histocompatibility-complex
(MHC) class II signature, and the lymph-node sig-

nature were predictive of the clinical outcome, as
was the level of expression of 

 

BMP6,

 

 a gene that does
not belong to a defined expression signature. As in
mantle-cell lymphoma, expression of the prolifera-
tion signature predicted a poor outcome. Predictive
genes in two other signatures suggest that the host
immune response has an important role in curative
responses to chemotherapy. Expression of the
lymph-node–signature genes reflects the nontumor
cells in the diffuse large-B-cell lymphoma–biopsy

 

Figure 3. Examples of Molecularly and Clinically Distinct Subgroups of Lymphoma (Panel A) and Leukemia (Panel B).

 

Panel A shows the levels of expression of 57 genes that distinguish three subgroups of diffuse large-B-cell lymphoma

 

4

 

: 
germinal-center B-cell–like (orange), type 3 (purple), and activated B-cell–like (blue). The Kaplan–Meier curve shows 
that overall survival differs among the subgroups after chemotherapy. Panel B shows 39 genes that are differentially ex-
pressed in two subgroups of B-cell chronic lymphocytic leukemia,

 

9 

 

one with unmutated (wild-type) immunoglobulin 
genes (purple) and one with somatically mutated immunoglobulin genes (blue). The Kaplan–Meier curve shows that the 
two subgroups differ with respect to the time to initial treatment after diagnosis.
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Figure 4. Use of the Proliferation Gene-Expression Signature to Predict the Clinical Outcome in Mantle-Cell Lymphoma (Panel A) and the De-
velopment of a Multivariate Gene-Expression–Based Predictor of Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma (Panel B).

 

Panel A shows the use of the proliferation gene-expression signature to predict the length of survival in patients with mantle-cell lymphoma. 
Elevated levels of expression of genes in the proliferation gene-expression signature in a biopsy specimen of mantle-cell lymphoma was asso-
ciated with short survival.
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 The relative level of expression of the proliferation-signature genes is represented by the color bars; the biopsy 
samples are ordered from left to right according to the increasing relative expression of the proliferation-signature genes. The levels of expres-
sion of 20 proliferation-signature genes were averaged, and the resulting average was used to subdivide patients with mantle-cell lymphoma 
into four quartiles. The Kaplan–Meier plot illustrates the striking differences in the length of survival among these four risk groups. In Panel 
B, the biopsy specimens of diffuse large-B-cell lymphoma are ordered as in Figure 3A according to their assignment to the three subgroups. 
A supervised analysis of gene-expression data identified four gene-expression signatures and one single gene — 

 

BMP6

 

 — with patterns of ex-
pression that correlated with clinical outcome.

 

4

 

 A high level of expression of a gene or signature within a tumor was associated with a favor-
able or poor outcome after chemotherapy, as indicated. The colored bars represent the relative levels of expression of each signature or gene 
in each of the biopsy specimens according to the scale shown. The levels of expression of the signatures represent averages of data from mul-
tiple genes in each signature. These five patterns of gene expression vary independently of one another. Since each of these patterns corre-
lates with the clinical outcome, multiple biologic attributes of the tumors must influence the clinical outcome. A linear combination of these 
five gene-expression components is used to assign a gene-expression outcome-predictor score for each patient. Patients are ranked accord-
ing to their outcome-predictor scores and divided into quartiles. The Kaplan–Meier plot demonstrates the ability of the gene-expression–
based outcome predictor to classify patients with diffuse large-B-cell lymphoma into prognostic groups. MHC denotes major histocompati-
bility complex. Data are adapted from Lymphoma/Leukemia Molecular Profiling Project studies of gene expression and clinical outcome in 
patients with diffuse large-B-cell lymphoma and mantle-cell lymphoma.

 

4,13

A

B

Proliferation-signature
average

Mantle-Cell Lymphoma–Biopsy Specimens

Diffuse Large-B-Cell Lymphoma–Biopsy Specimens

Proliferation-signature
genes

4 6 8 10 1220 14

Overall Survival (yr)

Overall Survival (yr)

Pr
ob

ab
ili

ty

Median survival

3.3 yr
(quartile 2)
2.3 yr
(quartile 3)
0.8 yr
(quartile 4)

6.7 yr
(quartile 1)

Predicted
outcome

Poor

Poor

Favorable

Favorable

Favorable
Germinal-center B-cell

signature

MHC class II signature

BMP-6 0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Lymph-node signature

Proliferation signature

5-Year survival

71%
34%
15%

73%

HighLow
Level of gene expression

Germinal-center
B-cell–like

Type 3
Activated
B-cell–like

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

Quartile of Risk

1 2 3 4



 

n engl j med 

 

348;18

 

www.nejm.org may 

 

1, 2003

 

genomic medicine

 

1783

 

specimen, including activated macrophages, natu-
ral killer cells, and stromal cells. A high level of ex-
pression of these genes predicts a favorable clinical
outcome, suggesting that this reactive immune re-
sponse is beneficial. The MHC class II signature
includes genes encoding components of this crit-
ical antigen-presentation–protein complex, and
decreased expression of these genes predicts a poor
outcome. These findings suggest that some tumors
may evade the immune response by down-regulat-
ing their antigen-presentation capacity.

These expression signatures can be combined to
form a multivariate predictor of survival after che-
motherapy for diffuse large-B-cell lymphoma.

 

4

 

 With
the use of this approach, half the patients can be
placed into a favorable-risk group, with a five-year
survival rate of more than 70 percent; one quarter
can be assigned to a poor-risk group, with a five-year
survival rate of 15 percent; and the remaining pa-
tients are in an intermediate-risk group, with a five-
year survival rate of 34 percent (Fig. 4B).

 

acute leukemias

 

The molecular diagnosis of leukemias began with
the recognition and analysis of recurrent chromo-
somal translocations.

 

14,15

 

 The genes discovered at
the translocation break points have drawn attention
to critical regulatory pathways in hematopoietic cells
that can cause cancer when they are dysregulated.
In many acute leukemias, translocations fuse genes
that reside on the two partner chromosomes, cre-
ating a chimeric gene with novel oncogenic prop-
erties.

Chromosomal translocations have been used to
identify patients with acute leukemia with distinct
clinical outcomes.

 

16,17

 

 In acute myeloid leukemia
(AML), for instance, the presence of a t(8;21) trans-
location or a chromosome 16 inversion identifies
patients with a comparatively good prognosis,
whereas the t(9;22) translocation is associated with
a poor outcome.

 

17

 

 It is important to note that chro-
mosomal translocations have been used to identify
patients who will benefit from intensifying the dose
of chemotherapy.

 

18-20

 

Despite these prognostic and therapeutic suc-
cesses, chromosomal translocations account for
only part of the varied clinical behavior of acute leu-
kemia, for several reasons. First, other genetic aber-
rations can be functionally equivalent to a transloca-

tion,

 

21,22

 

 thus diminishing the prognostic power
of a translocation as a single variable. Second, ad-
ditional oncogenic abnormalities may accumulate
in a leukemia that alter its responsiveness to ther-
apy. For example, mutations in the gene encoding
the flt3 receptor tyrosine kinase have been associ-
ated with response to treatment in patients with
AML.

 

23-26

 

 Furthermore, flt3 mutations that activate
the kinase are present in some cases of acute lym-
phoblastic leukemia (ALL) with a t(4;14) transloca-
tion, rendering them susceptible to killing by flt3
inhibitors.

 

27 

 

Finally, a sizable fraction of the acute
leukemias have none of the defined recurrent trans-
locations.

 

16,17

 

Gene-expression profiling has been used as an
alternative approach to mapping chromosomal
translocations. In pediatric B-cell ALL, gene-expres-
sion signatures have been identified that correlate
with six different chromosomal abnormalities.

 

28,29

 

These gene-expression signatures can be combined
with the use of statistical algorithms to predict chro-
mosomal abnormalities with 96 to 100 percent ac-
curacy.

 

29

 

 Likewise, in adult AML, a gene-expres-
sion–based predictor has been created that can
identify three different chromosomal translocations
with a high rate of accuracy.

 

30

 

 Gene-expression pre-
dictors can also identify patients with AML who have
isolated trisomy 8.

 

31

 

 These encouraging results
demonstrate that DNA microarrays can be used to
diagnose most chromosomal abnormalities in acute
leukemias and could potentially substitute for the
multiple diagnostic tests for these abnormalities
that are currently required.

An oncogene likely to be causally related to T-cell
ALL can be dysregulated by chromosomal transloca-
tions in some cases but by alternative mechanisms
in others.

 

22

 

 For example, the 

 

HOX11

 

 oncogene is in-
volved in recurrent but infrequent translocations in
T-cell ALL, but gene-expression profiling revealed
that some cases of T-cell ALL overexpress 

 

HOX11

 

without any detectable chromosomal abnormalities
in this gene. All leukemias that overexpress 

 

HOX11

 

have a common gene-expression signature, sug-
gesting that they are biologically similar. Most im-
portant, patients with leukemias that overexpress

 

HOX11

 

 have a favorable outcome, as compared with
patients with other types of T-cell ALL, whether or
not the overexpression is due to translocation, indi-
cating the clinical superiority of expression profil-
ing

 

22

 

 over identification of the translocation.
Two adverse events after the treatment of acute

leukemias are relapse and the development of sec-

molecular diagnosis

of leukemias
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ondary leukemias. In B-cell ALL, gene-expression
profiling at the time of diagnosis provided informa-
tion that could predict which patients would relapse
and which would remain in continuous complete
remission.

 

29

 

 Interestingly, no patterns of gene ex-
pression have been found to predict relapse in all
subtypes of ALL. Rather, relapse was predicted by
the expression of different genes in each leukemic
subtype, emphasizing once again their divergent bi-
ologic characteristics. Secondary AML arises as a
consequence of treatment in some patients with
ALL, and this complication could also be predicted
on the basis of gene-expression profiling in the sub-
group of B-cell ALL with the t(12;21) transloca-
tion.

 

29

 

 Although these predictors of clinical out-
come will need to be validated in independent data
sets, these findings suggest that treatment stratifi-
cation based on gene-expression profiling can be
initiated at the time of the initial diagnosis of ALL.

 

chronic lymphocytic leukemia

 

The most common leukemia in humans — chronic
lymphocytic leukemia (CLL) — is an indolent but
inexorable disease with no cure. Studies of immu-
noglobulin gene mutations in CLL cells raised the
intriguing hypothesis that CLL might be two dis-
tinct diseases.

 

32,33

 

 The presence of somatic muta-
tions in the immunoglobulin genes of CLL cells de-
fined a group of patients who had stable or slowly
progressing disease requiring late or no treatment.
By contrast, the absence of immunoglobulin gene
mutations in CLL cells defined a group of patients
who had a progressive clinical course requiring ear-
ly treatment. These two subtypes of CLL may also
differ with respect to oncogenic mechanisms, since
deletion of the ATM locus on chromosome 11q is
associated with the absence of immunoglobulin
gene mutations in CLL

 

34-36

 

 and with shortened sur-
vival in some patients.

 

37

 

Despite these clinical and molecular differences
between the subtypes of CLL, gene-expression pro-
filing revealed that CLL cells express a common
gene-expression signature that differentiates this
form of leukemia from other lymphoid cancers and
from normal lymphoid subpopulations.

 

9,38

 

 This
signature is shared by all cases of CLL, irrespective
of the immunoglobulin gene mutation status, sug-

gesting that CLL should be considered a single dis-
ease entity.

Nonetheless, given the clear clinical differences
between the two subtypes of CLL, a hunt was made
for genes that correlated with this distinction.

 

9,38

 

Roughly 160 genes were found whose levels of ex-
pression differed significantly between the two sub-
types

 

9

 

 (Fig. 3B). Expression of the single most dis-
criminating gene, 

 

ZAP-70,

 

 distinguished these two
subtypes with 93 percent accuracy.

 

9,39

 

 Whereas
analysis of the immunoglobulin gene sequence
would be a challenging and expensive test to intro-
duce into routine clinical practice, a quantitative re-
verse-transcriptase–polymerase-chain-reaction as-
say or protein-based assay for the expression of

 

ZAP-70

 

 is feasible.

 

39,40

 

What form of technology will be used for the mo-
lecular diagnosis of cancer in the future? Our expe-
rience with gene-expression profiling has taught us
two clear lessons: multiple genes need to be studied
to distinguish most types of cancer, and quantitative
measurement of molecular differences among tu-
mors results in clinically important diagnostic and
prognostic distinctions. An important goal will
therefore be to develop a platform for routine clin-
ical diagnosis that can quantitatively measure the ex-
pression of a few hundred genes. Such a diagnostic
platform would allow us quickly to translate what
we have learned about important molecular sub-
groups within each hematologic cancer. As we de-
sign new clinical trials, however, we must include
genomic-scale gene-expression profiling in order
to identify the genes that influence the response to
the agents under investigation. In this fashion, we
can iteratively refine the molecular diagnosis of the
hematologic cancers on the basis of new advances
in treatment and thus eventually reach the goal of
tailored therapies for molecularly defined diseases.
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